Як розкласти на множники тричлен
В алгебрі тричлен - це многочлен, що містить три члена і має вигляд ax + bx + c. Трехчлен можна розкласти на множники кількома способами залежно від виду самого трехчлена. Багаточлени вищих ступенів з членами x або x не завжди можна розкласти за допомогою описаних методів, але їх можна спростити або використовувати заміну, щоб перетворити їх і вирішити як звичайне квадратне рівняння.
кроки
Метод 1 з 3:
Розкладання x + bx + c
1. Навчіться перемножать члени двох Двочленні. Для цього перемножте перші члени, потім перемножте перший член (першого двочлена) і другий член (другого двочлена), потім перемножте другий член (першого двочлена) і перший член (другого двочлена), а потім перемножте другі члени. Наприклад, розглянемо твір двох Двочленні (х + 2) (х + 4).
- Перемноження перших членів: (x+2) (x+4) = x + __
- Перемноження першого члена (першого двочлена) і другого члена (другого двочлена): (x+2) (x+4) = X+4x + __
- Перемноження другого члена (першого двочлена) і першого члена (другого двочлена): (x+2) (з+4) = x + 4x+2x + __
- Перемноження друге членів: (x+2) (X+4) = X + 4x + 2x+8
- Спрощення: x+4x + 2x+8 = x+6кс+8

2. Розкладання на множники. При перемножуванні двох Двочленні ви отримуєте тричлен видуax+bx+c, де a, b, c - постійні коефіцієнти (тобто числа). Тому можна зробити і зворотну операцію - розкласти тричлен на твір двох Двочленні.

3. Запишіть даний вам тричлен, поставте знак рівності, а потім напишіть відповідь у вигляді (____) (____). Ви заповните прогалини в міру розкладання трехчлена на множники.

4. Заповніть перші прогалини в обох дужках. У простих тричленне, в яких перший член - це x, першими членами в обох Двочленні будуть з і з, так какx * x = x.

5. Якщо ви повернетеся до першого кроку цього розділу, то побачите, що в результаті перемноження друге членів Двочленні виходить вільний член трехчлена (член без змінної «х»). Таким чином, необхідно знайти два числа, які при перемножуванні дадуть вільний член.

6. Заповніть другі прогалини в обох дужках. У попередньому кроці ви отримали пари множників (вільного члена). Підставте їх у відповідь і перевірте, чи відповідають вони другому члену даного вам трехчлена.
Метод 2 з 3:
Розкладання складних тричленів
1. Спростіть складний тричлен до простого (якщо можливо). Наприклад, розглянемо складний тричлен 3x + 9x - 30. Визначте, чи можна винести за дужки загальний множник (який дорівнює найбільшому загальному дільнику кожного члена трехчлена). У нашому прикладі за дужку можна винести 3:
- 3x = (3) (x)
- 9x = (3) (3x)
- -30 = (3) (- 10)
- Таким чином, 3x + 9x - 30 = (3) (x + 3x-10). Ви можете розкласти отриманий простий тричлен так, як описано в попередньому розділі. Ви отримаєте: (3) (х-2) (х + 5).

2. Більш складне спрощення. Можливо, за дужки потрібно винести множник зі змінною або виконати процес винесення множника за дужки кілька разів, щоб отримати простий тричлен. Ось кілька прикладів:

3. Розкладання тричленів, у яких при x є коефіцієнт. Деякі складні квадратного тричлена можна спростити до простих тричленів. Наприклад, розкладіть 3x + 10x + 8.

4. Використовуйте заміну для розкладання многочленів вищих ступенів, наприклад, з членом, рівним x. Використовуйте заміну, щоб привести такий многочлен до простого многочлену. наприклад:
Метод 3 з 3:
Розкладання в особливих випадках
1. Прості числа. Перевірте, чи є коефіцієнт в першому і / або третьому члені простим числом. Просте число - це число, що ділиться тільки на 1 або саме себе, тобто у такого числа тільки одна пара множників.
- Наприклад, в тричленної x + 6x + 5 вільний член 5 - це просте число, тому твір Двочленні можна записати у вигляді (__ 5) (__ 1).
- У тричленну 3x + 10x + 8 коефіцієнт в першому члені 3 є простим числом, тому твір Двочленні можна записати у вигляді (3x __) (x__).
- У тричленну 3x + 4x + 1 обидва коефіцієнта 3 і 1 є простими числами, тому єдино правильним рішенням є твір Двочленні (3x + 1) (x + 1). Необхідно перемножити ці двочлена, щоб перевірити відповідь, так як деякі Трехчлен взагалі не можна розкласти на множники (наприклад, тричлен 3x + 100x + 1 на множники не розкладається).

2. Перевірте, чи є тричлен повним квадратом. Трехчлен, що є повним квадратом, можна розкласти на добуток двох однакових Двочленні, наприклад, (х + 1) (х + 1) = (x + 1). Ось кілька найбільш поширених тричленів, є повними квадратами:

3. Перевірте, чи існує рішення. Не всі Трехчлен можна розкласти на множники. Якщо вам дано квадратний тричлен виду ax + bx + c, використовуйте формулу для вирішення квадратного рівняння, щоб визначити, чи можна розкласти на множники цей тричлен. Якщо в результаті рішення ви отримаєте квадратний корінь з від`ємного числа, то тричлен розкласти на множники не можна.
Відповіді та додаткові завдання
- Тут представлені відповіді на завдання з розділу «Розкладання складних тричленів». Ви вже спростили Трехчлен, тому розкладіть їх за допомогою методу, описаного в першому розділі, а потім отриману відповідь порівняйте з наступним відповідями:
- (2y) (x + 7x + 12) = (X + 3) (x + 4)
- (X) (x + 11x - 26) = (X + 13) (x-2)
- (-1) (x - 6x + 9) = (x-3) (x-3) = (X-3)
- Спробуйте вирішити такі завдання. Тут в кожному тричленне можна винести за дужки загальний множник. Виділіть порожній простір після знаків рівності, щоб подивитися правильні відповіді:
- 3x + 3x-6x = (3x) (x + 2) (x-1)
- -5xy + 30xy-25yx = (-5xy ^ 2) (x-5) (x-1)
- Спробуйте вирішити такі завдання. Тут Трехчлен не спрощує, тому знайдіть рішення у вигляді (_x + __) (_ x + __). Виділіть порожній простір після знаків рівності, щоб подивитися правильні відповіді:
- 2x + 3x-5 = (2x + 5) (x-1)
- 9x + 6x + 1 = (3x + 1) (3x + 1) = (3x + 1) (Підказка: працюйте з декількома парами множників 9x.)
Поради
- Якщо з`ясувати, як розкласти на множники квадратний тричлен (ax + bx + c), не можна, використовуйте формулу для вирішення квадратного рівняння, щоб знайти «х».
- Використовуйте критерій Ейзенштейна для визначення неможливості розкладання трехчлена на множники. Цей критерій можна застосувати для многочленів будь-якого порядку, але краще всього працює з тричленне. Якщо існує просте число p, яке без остачі ділить коефіцієнти двох останніх членів і яке відповідає наступним умовам, то многочлен розкласти не можна.
- Вільний член (с) ділиться на р, але не на p.
- Коефіцієнт першого члена (а) не ділиться на p.
- Наприклад, многочлен 14x + 45x + 51 розкласти не можна, так як просте число 3 ділить 45 і 51, але не 14, а 51 не ділиться на 3.
попередження
- Хоча це і вірно для квадратних тричленів, інші Трехчлен не завжди розкладаються на твір двох Двочленні. Наприклад: x + 105x + 46 = (x + 5x + 2) (x - 5x + 23).

Як спрощувати раціональні вирази
Як доповнити до повного квадрата
Як розкласти двочлен на множники
Як ділити многочлени
Як вирішувати многочлени
Як знайти вершину
Як вирішити рекурентне співвідношення
Як знайти кількість множників числа
Як знайти число членів арифметичної прогресії
Як знайти рівняння асимптот гіперболи
Як застосовувати властивість дистрибутивности при вирішенні рівняння
Як додавати і віднімати квадратний корінь
Як розкласти на множники многочлен другого ступеня (квадратне рівняння)
Як розкласти на множники рівняння алгебри
Як розкласти многочлен третього ступеня на множники
Як розкладати на множники способом групування
Як множити двозначні числа
Як спрощувати алгебраїчні вирази
Як помножити в стовпчик
Як множити коріння