Як обчислити кубічний корінь вручну

Якщо під рукою є калькулятор, витягти кубічний корінь з будь-якого числа не складе ніяких проблем. Але якщо калькулятора немає або ви просто хочете справити враження на оточуючих, витягніть кубічний корінь вручну. Більшості людей описуваний тут процес здасться досить складним, але з практикою витягувати кубічні коріння стане набагато легше. Перед тим як приступити до читання даної статті, згадайте основні математичні операції і обчислення з числами в кубі.

кроки

Частина 1 з 3:
Витяг кубічного кореня на простому прикладі
  1. Зображення з назвою Calculate Cube Root by Hand Step 1
1. Запишіть завдання. Витяг кубічного кореня вручну схоже на розподіл в стовпчик, але з деякими нюансами. Спочатку запишіть завдання в певній формі.
  • Запишіть число, з якого потрібно витягти кубічний корінь. Число розбийте на групи по три цифри, причому відлік почніть з десяткової коми. Наприклад, потрібно витягти кубічний корінь з 10. Напишіть це число так: 10, 000 000. Додаткові нулі покликані підвищити точність результату.
  • Біля і над числом намалюйте знак кореня. Уявіть, що це горизонтальна і вертикальна лінії, які ви малюєте при розподілі в стовпчик. Єдина відмінність - це форма двох знаків.
  • Над горизонтальною лінією поставте десяткову кому. Зробіть це безпосередньо над десяткової коми вихідного числа.
  • Зображення з назвою Calculate Cube Root by Hand Step 2
    2. Запам`ятайте результати зведення в куб цілих чисел. Вони будуть використані в обчисленнях.
  • 13=1*1*1=1{ Displaystyle 1 ^ {3} = 1 * 1 * 1 = 1}1 ^ {3} = 1 * 1 * 1 = 1
  • 23=2*2*2=8{ Displaystyle 2 ^ {3} = 2 * 2 * 2 = 8}2 ^ {3} = 2 * 2 * 2 = 8
  • 33=3*3*3=27{ Displaystyle 3 ^ {3} = 3 * 3 * 3 = 27}3 ^ {3} = 3 * 3 * 3 = 27
  • 43=4*4*4=64{ Displaystyle 4 ^ {3} = 4 * 4 * 4 = 64}4 ^ {3} = 4 * 4 * 4 = 64
  • 53=5*5*5=125{ Displaystyle 5 ^ {3} = 5 * 5 * 5 = 125}5 ^ {3} = 5 * 5 * 5 = 125
  • 63=6*6*6=216{ Displaystyle 6 ^ {3} = 6 * 6 * 6 = 216}6 ^ {3} = 6 * 6 * 6 = 216
  • 73=7*7*7=343{ Displaystyle 7 ^ {3} = 7 * 7 * 7 = 343}7 ^ {3} = 7 * 7 * 7 = 343
  • 83=8*8*8=512{ Displaystyle 8 ^ {3} = 8 * 8 * 8 = 512}8 ^ {3} = 8 * 8 * 8 = 512
  • я3=я*я*я=729{ Displaystyle 9 ^ {3} = 9 * 9 * 9 = 729}я ^ {3} = я * я * я = 729
  • 103=10*10*10=1000{ Displaystyle 10 ^ {3} = 10 * 10 * 10 = 1000}10 ^ {3} = 10 * 10 * 10 = 1000
  • Зображення з назвою Calculate Cube Root by Hand Step 3
    3. Знайдіть першу цифру відповіді. Виберіть куб цілого числа, який найближче, але менше першої групи з трьох цифр.
  • У нашому прикладі перша група з трьох цифр - це число 10. Знайдіть найбільший куб, який менше 10. Таким кубом є 8, а кубічний корінь з 8 дорівнює 2.
  • Над горизонтальною лінією над цифрою 10 напишіть цифру 2. Потім запишіть значення операції 23{ Displaystyle 2 ^ {3}}2 ^ {3} = 8 під 10. Проведіть межу і відніміть 8 з 10 (як при звичайному розподілі в стовпчик). В результаті вийде 2 (це перший залишок).
  • Таким чином, ви знайшли першу цифру відповіді. Подумайте, чи є даний результат досить точним. У більшості випадків це буде дуже приблизний відповідь. Зведіть результат в куб, щоб з`ясувати, наскільки він близький до вихідного числа. У нашому прикладі: 23{ Displaystyle 2 ^ {3}}2 ^ {3} = 8, що не дуже близько до 10, тому обчислення треба продовжити.
  • Зображення з назвою Calculate Cube Root by Hand Step 4
    4. Знайдіть наступну цифру відповіді. До першого залишку припишіть другу групу з трьох цифр, а зліва від отриманого числа проведіть вертикальну риску. За допомогою отриманого числа ви знайдете другу цифру відповіді. У нашому прикладі до першого залишку (2) потрібно приписати другу групу з трьох цифр (000), щоб отримати числа 2000.
  • Зліва від вертикальної лінії ви напишіть три числа, сума яких дорівнює якомусь першому множнику. Залиште порожні простору для цих чисел, а між ними поставте знаки «плюс».
  • Зображення з назвою Calculate Cube Root by Hand Step 5
    5. Знайдіть перший доданок (з трьох). У першому порожньому просторі запишіть результат множення числа 300 на квадрат першої цифри відповіді (вона записана над знаком кореня). У нашому прикладі першою цифрою відповіді є 2, тому 300 * (2 ^ 2) = 300 * 4 = 1200. Напишіть 1200 на першому порожньому просторі. Перших складових є число 1200 (плюс ще два числа, які потрібно знайти).
  • Зображення з назвою Calculate Cube Root by Hand Step 6
    6. Знайдіть другу цифру відповіді. З`ясуйте, на яке число потрібно помножити 1200, щоб результат був близький, але не перевищує 2000. Таким числом може бути тільки 1, так як 2 * 1200 = 2400, що більше 2000. Напишіть 1 (друга цифра відповіді) після 2 і десяткової коми над знаком кореня.
  • Зображення з назвою Calculate Cube Root by Hand Step 7
    7. Знайдіть друге і третє складові (з трьох). Множник складається з трьох чисел (доданків), перше з яких ви вже знайшли (1200). Тепер потрібно знайти два доданків.
  • Помножте 3 на 10 і на кожну цифру відповіді (вони записані над знаком кореня). У нашому прикладі: 3 * 10 * 2 * 1 = 60. Додайте цей результат до 1200 і отримаєте 1260.
  • Нарешті, зведіть в квадрат останню цифру відповіді. У нашому прикладі останньою цифрою відповіді є 1, тому 1 ^ 2 = 1. Таким чином, перший множник дорівнює сумі наступних чисел: 1200 + 60 + 1 = 1261. Запишіть це число зліва від вертикальної риси.
  • Зображення з назвою Calculate Cube Root by Hand Step 8
    8. Помножте і відніміть. Помножте останню цифру відповіді (в нашому прикладі це 1) на знайдений множник (1 261): 1 * 1 261 = 1 261. Запишіть це число під 2000 і відніміть його з 2000 року. Ви отримаєте 739 (це другий залишок).
  • Зображення з назвою Calculate Cube Root by Hand Step 9
    я. Подумайте, чи є отриманий відповідь досить точним. Робіть це кожен раз, після того як завершите чергове віднімання. Після першого вирахування відповідь дорівнював 2, що не є точним результатом. Після другого вирахування відповідь дорівнює 2,1.
  • Щоб перевірити точність відповіді, зведіть його в куб: 2,1 * 2,1 * 2,1 = 9,261.
  • Якщо ви вважаєте, що відповідь досить точний, обчислення годі й продолжать- в іншому випадку виконайте ще одне віднімання.
  • Зображення з назвою Calculate Cube Root by Hand Step 10
    10. Знайдіть другий множник. Щоб попрактикуватися в обчисленнях і отримати більш точний результат, повторіть дії, які описані вище.
  • До другого залишку (739) припишіть третю групу з трьох цифр (000). Ви отримаєте число 739000.
  • Помножте 300 на квадрат числа, яке записано над знаком кореня (21): 300*212{ Displaystyle 300 * 21 ^ {2}}300 * 21 ^ {2} = 132300.
  • Знайдіть третю цифру відповіді. З`ясуйте, на яке число потрібно помножити 132300, щоб результат був близький, але не перевищував 739000. Таким числом є 5: 5 * 132200 = 661500. Напишіть 5 (третя цифра відповіді) після 1 над знаком кореня.
  • Помножте 3 на 10 на 21 і на останню цифру відповіді (вони записані над знаком кореня). У нашому прикладі: 3*21*5*10=3150{ Displaystyle 3 * 21 * 5 * 10 = 3150}3 * 21 * 5 * 10 = 3150.
  • Нарешті, зведіть в квадрат останню цифру відповіді. У нашому прикладі останньою цифрою відповіді є 5, тому 52=25.{ Displaystyle 5 ^ {2} = 25.}5 ^ {2} = 25
  • Таким чином, другий множник дорівнює: 132300 + 3150 + 25 = 135475.
  • Зображення з назвою Calculate Cube Root by Hand Step 11
    11. Помножте останню цифру відповіді на другий множник. Після того як ви знайшли другий множник і третю цифру відповіді, дійте наступним чином:
  • Помножте останню цифру відповіді на знайдений множник: 135475 * 5 = 677 375.
  • Відніміть: 739000-677375 = 61625.
  • Подумайте, чи є отриманий відповідь досить точним. Для цього зведіть його в куб: 2,15*2,15*2,15=я,94{ Displaystyle 2,15 * 2,15 * 2,15 = 9,94}2,15 * 2,15 * 2,15 = я, 94.
  • Зображення з назвою Calculate Cube Root by Hand Step 12
    12. Запишіть відповідь. Результат, записаний над знаком кореня, є відповіддю з точністю до двох цифр після коми. У нашому прикладі кубічний корінь з 10 дорівнює 2,15. Перевірте відповідь, звівши його в куб: 2,15 ^ 3 = 9,94, що приблизно дорівнює 10. Якщо вам потрібна велика точність, продовжите обчислення (як описано вище).
  • Частина 2 з 3:
    Витяг кубічного кореня методом оцінок
    1. Зображення з назвою Calculate Cube Root by Hand Step 13
    1. Використовуйте куби чисел, щоб визначити верхню і нижню межі. Якщо потрібно витягти кубічний корінь практично з будь-якого числа, знайдіть куби (деяких чисел), які близькі до даного числа.
    • Наприклад, потрібно витягти кубічний корінь з 600. Так як 83=512{ Displaystyle 8 ^ {3} = 512}8 ^ {3} = 512 і я3=729{ Displaystyle 9 ^ {3} = 729}я ^ {3} = 729, то значення кубічного кореня з 600 лежить між 8 і 9. Тому використовуйте числа 512 і 729 в якості верхнього і нижнього меж відповіді.
  • Зображення з назвою Calculate Cube Root by Hand Step 14
    2. Оцініть друге число. Перше число ви знайшли завдяки знанню кубів цілих чисел. Тепер ціле число перетворите в десяткову дріб, приписавши до нього (після десяткової коми) деяку цифру від 0 до 9. Необхідно знайти десяткову дріб, куб якій буде близький, але менше вихідного числа.
  • У нашому прикладі число 600 знаходиться між числами 512 і 729. Наприклад, до першого знайденого числа (8) припишіть цифру 5. Вийде число 8,5.
  • Зображення з назвою Calculate Cube Root by Hand Step 15
    3. Оцініть отримане число, звівши його в куб. Зробіть це, щоб перевірити, що куб близький, але не більше вихідного числа.
  • У нашому прикладі: 8,5*8,5*8,5=614,1.{ Displaystyle 8,5 * 8,5 * 8,5 = 614,1.}8,5 * 8,5 * 8,5 = 614,1
  • Зображення з назвою Calculate Cube Root by Hand Step 16
    4. Якщо потрібно, оцініть інше число. Порівняйте куб отриманого числа з вихідним числом. Якщо куб отриманого числа більше вихідного числа, спробуйте оцінити менше число. Якщо ж куб отриманого числа набагато менше вихідного числа, оцінюйте великі числа до тих пір, поки куб одного з них не перевищить вихідне число.
  • У нашому прикладі: 8,53{ Displaystyle 8,5 ^ {3}}8,5 ^ {3} > 600. Таким чином, оцініть менше число 8,4. Зведіть це число в куб і порівняйте його з вихідним числом: 8,4*8,4*8,4=592,7{ Displaystyle 8,4 * 8,4 * 8,4 = 592,7}8,4 * 8,4 * 8,4 = 592,7. Цей результат менше вихідного числа. Таким чином, значення кубічного кореня з 600 лежить між 8,4 і 8,5.
  • Зображення з назвою Calculate Cube Root by Hand Step 17
    5. Оцініть наступне число, щоб підвищити точність відповіді. До кожного числа, яке ви оцінили останнім, приписуйте цифру від 0 до 9 до тих пір, поки не отримаєте точну відповідь. У кожному оціночному раунді потрібно знайти верхню і нижню межі, між якими знаходиться вихідне число.
  • У нашому прикладі:8,43=592,7{ Displaystyle 8,4 ^ {3} = 592,7}8,4 ^ {3} = 592,7 і 8,53=614,1{ Displaystyle 8,5 ^ {3} = 614,1}8,5 ^ {3} = 614,1. Початкове число 600 ближче до 592, ніж до 614. Тому до останнього числа, яке ви оцінили, припишіть цифру, яка ближче до 0, ніж до 9. Наприклад, таким числом є 4. Тому зведіть в куб число 8,44.
  • Зображення з назвою Calculate Cube Root by Hand Step 18
    6. Якщо потрібно, оцініть інше число. Порівняйте куб отриманого числа з вихідним числом. Якщо куб отриманого числа більше вихідного числа, спробуйте оцінити менше число. Коротше кажучи, потрібно знайти такі два числа, куби яких трохи більше і трохи менше вихідного числа.
  • У нашому прикладі 8,44*8,44*8,44=601,2{ Displaystyle 8,44 * 8,44 * 8,44 = 601,2}8,44 * 8,44 * 8,44 = 601,2. Це трохи більше вихідного числа, тому оціните інше (менше) число, наприклад, 8,43: 8,43*8,43*8,43=599,07{ Displaystyle 8,43 * 8,43 * 8,43 = 599,07}8,43 * 8,43 * 8,43 = 599,07. Таким чином, значення кубічного кореня з 600 лежить між 8,43 і 8,44.
  • Зображення з назвою Calculate Cube Root by Hand Step 19
    7. Виконуйте описаний процес до тих пір, поки не отримаєте відповідь, точність якого вас влаштує. Оцініть наступне число, порівняйте його з вихідним, потім, якщо потрібно, оцініть інше число і так далі. Зверніть увагу, що кожна додаткова цифра після десяткової коми підвищує точність відповіді.
  • У нашому прикладі куб числа 8,43 менше вихідного числа менш ніж на 1. Якщо потрібна велика точність, зведіть в куб число 8,434 і отримаєте, що 8,4343=599,93{ Displaystyle 8,434 ^ {3} = 599,93}8,434 ^ {3} = 599,93, тобто результат менше вихідного числа менш ніж на 0,1.
  • Частина 3 з 3:
    Пояснення описаного процесу обчислення
    1. Зображення з назвою Calculate Cube Root by Hand Step 20
    1. Згадайте біномінальної ряд. Біномінальної ряд - це результат зведення бінома (двочлена) в деяку ступінь, в даному випадку в куб. Щоб зрозуміти описаний тут алгоритм вилучення кубічного кореня, спочатку згадайте, як зводиться в куб двочлен. Швидше за все, ви вивчали це в школі (і, ймовірно, незабаром забули, як більшість людей). змінними А{ Displaystyle A}А і В{ Displaystyle B}В позначте деякі однозначні числа. Тоді двозначне число можна записати у вигляді бинома (10А+В){ Displaystyle (10A + B)}(10A + B).
    • тут член 10А{ Displaystyle 10A}10A являє собою розряд десятків, тобто якщо А{ Displaystyle A}А - це будь-який однозначне число, то 10А{ Displaystyle 10A}10A - це вже відповідне двозначне число. Наприклад, якщо А{ Displaystyle A}А = 2, а В{ Displaystyle B}В = 6, то (10А+В){ Displaystyle (10A + B)}(10A + B) = 26, тобто ви отримали двозначне число 26.
  • Зображення з назвою Calculate Cube Root by Hand Step 21
    2. Зведіть двочлен в куб. Зробіть це для того, щоб зрозуміти процес вилучення кубічного кореня, який описаний в першому розділі. Обчисліть (10А+В)3{ Displaystyle (10A + B) ^ {3}}(10A + B) ^ {3} = (10А+В)*(10А+В)*(10А+В){ Displaystyle (10A + B) * (10A + B) * (10A + B)}(10A + B) * (10A + B) * (10A + B) = 1000А3+300А2В+30АВ2+В3{ Displaystyle 1000A ^ {3} + 300A ^ {2} B + 30AB ^ {2} + B ^ {3}}1000A ^ {3} + 300A ^ {2} B + 30AB ^ {2} + B ^ {3} (Тут ми опустили кілька етапів зведення в куб, щоб не захаращувати статтю обчисленнями).
  • Докладне пояснення можна знайти тут.
  • Зображення з назвою Calculate Cube Root by Hand Step 22
    3. Усвідомте алгоритм ділення в стовпчик. Зверніть увагу, що описаний тут метод вилучення кубічного кореня дуже нагадує поділ в стовпчик. При розподілі в стовпчик потрібно знайти число (приватне), при множенні якого на дільник вийде ділене. В описаному методі в якості приватного виступає результат вилучення кубічного кореня (він записується над знаком кореня). Тобто результат вилучення кубічного кореня можна уявити як біном (10A + B). Точні значення А і В на даному етапі не важливі: просто запам`ятайте, що результат можна записати у вигляді двочлена.
  • Зображення з назвою Calculate Cube Root by Hand Step 23
    4. Подивіться на біномінальної ряд. Він являє собою суму чотирьох одночленним, завдяки яким можна зрозуміти принцип дії алгоритму вилучення кубічного кореня. Зверніть увагу, що множник кожного етапу виведення кореня дорівнює сумі чотирьох доданків, які потрібно обчислити і скласти.
  • Множником першого члена є числа 1000. Щоб обчислити першу цифру відповіді, спочатку ви знаходите куб цілого числа, який найближче, але менше деякого числа (а саме першої групи з трьох цифр). Це визначає член 1000A ^ 3 біномного ряду.
  • Множником другого члена біномного ряду є число 300 (3*102{ Displaystyle 3 * 10 ^ {2}}3 * 10 ^ {2} = 300). Нагадаємо, що на кожному етапі вилучення кубічного кореня відповідна цифра (и) відповіді множилася на 300.
  • Другий доданок на кожному етапі виведення кореня визначається третім членом біноміального ряду, який дорівнює 30AB ^ 2.
  • Третє складова на кожному етапі виведення кореня визначається четвертим членом біноміального ряду, який дорівнює B ^ 3.
  • Зображення з назвою Calculate Cube Root by Hand Step 24
    5. Зверніть увагу на збільшення точності відповіді. Чим більше етапів виведення кореня ви пройдете, тим точніше буде відповідь. Наприклад, в цій статті потрібно було витягти кубічний корінь з 10. На першому етапі відповідь дорівнює 2, так як 23{ Displaystyle 2 ^ {3}}2 ^ {3} = 8, що близько, але менше 10. На другому етапі відповідь дорівнює 2,1, тому що 2,13=я,261{ Displaystyle 2,1 ^ {3} = 9,261}2,1 ^ {3} = я, 261, що набагато ближче до 10. На третьому етапі відповідь дорівнює 2,15, так як 2,153=я,94{ Displaystyle 2,15 ^ {3} = 9,94}2,15 ^ {3} = я, 94. Можна продовжити обчислення, використовуючи групи з трьох цифр, щоб підвищити точність відповіді.
  • Поради

    • Практика, щоб освоїти описані методи. Чим більше практики, тим швидше ви впораєтеся з обчисленнями.

    попередження

    • У процесі обчислення досить легко зробити помилку. Тому обов`язково перевірте відповідь.

    Що вам знадобиться

    • Ручка або олівець
    • Аркуш паперу
    • лінійка
    • ластик
    Cхоже